
CASE STUDY

Magnolia – Implementing Magnolia CMS

for a Major Automotive Manufacturer

In September 2010 Priocept started
working with a major automotive
manufacturer to streamline
management of their UK website.

The visual design and functionality o�ered
on the website was viewed as a resounding
success, and seen as the group’s �agship
website across Europe. However, technical
limitations in the deployment model and
content management capabilities led to
a number of serious operational issues:

The business was unable to update
its products, special o�ers and other
critical content in a timely manner.
Any changes were subject to a monthly
build, release and deployment process.

There was no established system
or process for authoring, reviewing
and publishing content.

Content could not easily be re-purposed
for multiple delivery channels.

Priocept initially worked alongside
the digital agency that had developed
the website to evaluate the website
implementation and recommend
a content management solution that
could integrated into the highly bespoke
solution. The brief from the client
mandated that the existing Adobe
Flex-based presentation layer must be
maintained, meaning that the new CMS
solution would initially be used as a
back-end management system only.
Additionally the website surfaced content
and functionality from a number of third
party and legacy systems focused on
product data, retailer data, consumer
�nance, test drive booking, digital assets,
and so on.

The client was particularly interested
in Priocept’s expertise with Java Content
Repository (JCR) and Apache Jackrabbit
technologies, as utilised extensively for the
Content Platform solution we built for TUI
Travel. Barebones content repository
implementations such as Apache Jackrabbit
or JBoss Modeshape can lend themselves
well to complex integrations as they
provide the bene�ts of a hierarchical
content model, versioning, full-text
search and node-level security, without
constraining the application logic
or integration possibilities.

We quickly realised during the initial
consulting sessions, that whilst a JCR
content repository was likely to be a good
�t, we would bene�t even further from the
content management speci�c functionality
of a JCR-complaint CMS. Authoring,
publishing and asset management would
be key areas of functionality required and
it was unlikely to make sense to build this
from scratch.

The next step was to build a matrix of
functional and technical requirements for
the technology platform and evaluate the
leading open source JCR-compliant CMS
platforms against these, whilst also
considering a custom build based on
Apache Jackrabbit. Based on this analysis,
it was clear that whilst none of the CMS
applications we evaluated would support
all of the requirements out-of-the-box and
a signi�cant degree of customisation would
be required. However, we were able
to con�dently recommend Magnolia CMS
for the project and harness its features
as a platform for further development.

Some of the key strengths of Magnolia
identi�ed during this activity were as
follows:

The fully featured API, built on top of the
JCR API. This means that Magnolia can
be treated as an enhanced JCR content
repository just like Apache Jackrabbit
(which it is in fact built on). The powerful
CMS features that come out of the box
with Magnolia can be used or not used
as appropriate, but do not impose any
constraint on how the underlying
repository can be used.

Extensibility – it’s easy to create
powerful new modules for custom
functionality and integration with
external components. This was a primary
concern for the project, and Magnolia’s
modular architecture makes it easier
than for many other platforms we have
worked with.

Powerful asset management, including
bulk uploads (via zip �les), merging,
tagging, metadata and a range of third
party modules to support automatic
image resizing, watermarking and so on.

Content modelling for domain-speci�c
types via the Data Module, and full
separation of content and presentation.
This is one of the key things we look for
when selecting CMS platforms for any
enterprise grade system.

BACKGROUND RECOMMENDING MAGNOLIA CMS

A key technical requirement was to
integrate the chosen CMS platform with
the existing Grails backend systems and
the Adobe Flex presentation tier.

The Grails web framework had been
adopted as the standard web develop-
ment platform utilised for all existing
backend components supporting the
website. Grails is built around the Groovy
dynamic programming language, which
in turn is based on Java. Grails provides
a framework for rapidly building MVC
web applications, including an
advanced object relational mapping
implementation (GORM) supporting
sca�olding. Put simply, sca�olding is
where the framework automatically takes
care of database persistence, signi�cantly
decreasing the development required.

The development and operations teams
were keen to ensure that the new CMS
solution would �t naturally into the Grails
environment. Commercially there had
been a signi�cant investment in this
stack and from a project delivery point
of view the client reported a measurable
increase in productivity since adopting
Grails. Being able to implement custom
CMS user interface features with Grails
was seen as a must.

The speci�c challenge set by the client
was to �nd a way to utilise Magnolia
and its powerful CMS features whilst
also harnessing the development and
operational bene�ts of the Grails platform.
At Priocept we are cautious of projects
heavily in�uenced by a speci�c technical
approach, especially if unproven.
However, the Grails framework and
Magnolia are individually excellent,
and the team were excited by the prospect
of combining the two technologies into
a single integrated platform.

We initially considered a number
of possible solutions and proposed
these to the client team:

Creating a custom “Grails” module for
Magnolia. We were encouraged by
Magnolia’s built in support for Groovy
via its Groovy Module, which supports
JCR data retrieval using the Groovy’s dot
notation. However, Grails needs its own
runtime environment, separate from the
Java runtime that Magnolia would run
under, so it was di�cult to see how this
could be achieved in an elegant manner.

Keep Magnolia and Grails loosely
coupled and integrate via web services.
A new Magnolia module would be
implemented to expose a domain
speci�c API. Whilst technically less risky,
this would bring limited development
and operational bene�ts compared
to a full integration.

Magnolia-wrapped-in-Grails. Create
a Grails plugin containing Magnolia;
the whole application running under the
Grails runtime environment. As Magnolia
is implemented in Java, which can be
thought of as a subset of Groovy, this
would be technically feasible whilst also
bringing together all of the bene�ts
of Grails with the features of Magnolia.

Magnolia-wrapped-in-Grails was the chosen
solution. The next step for Priocept’s
development team was to create a
prototype to prove out this approach,
working through the low level integration
issues. The prototype was successfully
demonstrated to the client in November
2010.

Following the successful technology
selection and integration of Magnolia into
the Grails framework, Priocept worked with
the client’s technical team to develop the
custom CMS functionality required for the
�rst release of the phased CMS development.

The client’s team had produced a set
of annotated wireframes detailing a
bespoke CMS user interface, to provide
tailored editing and management views
for a range of non-technical users
(employees from the products, retailers,
marketing departments and so on).
The Magnolia AdminCentral user interface
would be maintained for administrator
use only.

One of the key custom views related
to managing how content changes were
to be published to the public website:

Changes must be able to be collected
into “batches”, where all of the changes
in the batch would be published
together simultaneously and atomically.

A batch would have a description and
other metadata stored against it.

A batch could be scheduled for
automatic publishing at a later date,
or could be published immediately.

Each batch had its own approval
work�ow to be completed prior
to publishing.

Priocept implemented this batching model
using Magnolia’s Data Module to store
structured data around the batches, along
with the references of all individual changes
belonging to a batch. Magnolia’s built-in
publishing model was harnessed and
extended to run atomically across a whole
batch, meaning that if any item in the batch
failed all changes would be rolled back
to their previous state automatically.

Developing this batch publishing feature
along other custom views for managing
special o�ers successfully harnessed the
features of Magnolia with the bene�ts
of Grails, and vindicated the decision
to integrate these two best-of-breed
technologies.

INTEGRATION WITH GRAILS BATCH PUBLISHING

info@priocept.com | priocept.com | +44(0)207 422 0060 Copyright © Priocept Ltd. 2016

internet technology consultants

